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Abstract--We present a general, accurate, rigorous upper bound for the time required for the temperature 
distribution in a solid body suddenly immersed in a flowing fluid stream to reach the steady state. The 
bound provides a uniform-in-Blot-number estimate that should prove of interest to the heat transfer 
student and heat transfer practitioner alike : to the former as a succinct summary of the relevant physical 
phenomena : to the latter as a rough predictive preface to, verification of, and correlation framework for, 

more precise numerical calculation or experiment. 

1. I N T R O D U C T I O N  2. PROBLEM STATEMENT 

THE PROBLEM of heat transfer in a solid body suddenly 
immersed in a flowing fluid stream arises in numerous 
important applications. In most instances, the single 
quantity of  greatest interest is the time required for 
the body to reach a steady state, that is, the time 
required for the body to equilibrate to the far-field 
temperature of  the fluid environment.  

Although in certain limits the time-constant prob- 
lem can be treated analytically, these estimates are 
often imprecise; furthermore, uniform estimates over 
all parameter values are conspicuously absent. In this 
paper we derive a rigorous, accurate, uniform-in-Biot- 
number upper bound for the time required for the 
temperature distribution to reach the steady state. The 
bound should prove of  interest to the heat transfer 
student and heat transfer practit ioner alike: to the 
former as a succinct summary of  the relevant physical 
phenomena ; to the latter as a rough predictive preface 
to, verification of, and correlation framework for, 
subsequent precise numerical calculation or exper- 
iment. 

The outline of  this paper is as follows. In Section 2 
we state the governing equations, and formally define 
the equilibration time constant. In Section 3 we briefly 
survey standard procedures for estimating the time 
constant. In Section 4 we present our new bound. 
Lastly, in Section 5, we present numerical results for 
a simple illustrative example. 

2.1. Governing equations 
We consider the 'dunking'  problem of  a solid body 

with domain fL at initial temperature T~(x), suddenly 
placed at time t = 0 in a flowing fluid medium char- 
acterized by a constant-in-time and constant-in-space 
heat transfer coefficient h. The temperature dis- 
tribution in the body, T(x, t), is governed by the stan- 
dard heat equation 

OT 
p c ~ = k V 2 T + ( l  in f~ (I) 

-kVT ' f i=h(T- -T~_)  on 0f~ (2) 

T ( x , t = O ) =  T~(x) in f~ (3) 

where t is time, x a point in fL pc the (assumed- 
constant) volumelric specific heat of  the body, k the 
(assumed-constant) conductivity of  the body, 0(x) the 
constant-in-time volumetric heat generation, h the 
outward normal on the body surface Of L and T~ the 
assumed-constant temperature of  the fluid far from 
the solid body. We note that any result derived from 
equations (I)-(3)  is only as accurate as the value and 
constancy o f h  ; conjugate calculations are required to 
improve the situation, albeit at considerable expense. 

The situation is depicted in Fig. I. Although for 
purposes of  illustration we shall consider primarily 
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N O M E N C L A T U R E  

a characteristic length scale F~, F~ 
Bi Biot number 
c specific heat F, 
C~, C2, C~, C" constants depending only q~, q~- 

on geometry 
d bound on q extent ofa[l covering 0 

rectangles 
d k bound on q extent ofkth covering O* 

rectangle 
ds surface (line) element 
dx volume (area) element ® 
D k intersection of kth covering rectangle 

with body domain (~, q) 
h heat transfer coefficient E 
H~(fD, H~(f~) Sobolev spaces p 
k thermal conductivity z 
l k ~ extent ofkth covering rectangle z,. 
L length scale in example 
L~-(D) Sobolev space Z 
fi outward normal ~O 

volumetric heat generation 
R Rayleigh quotient i') k 
t time 
T temperature 
T~ average initial temperature 
T~ fluid temperature at infinity Other symbols 
x space coordinate, (x, y). ( ' ) i  

(")~, 

Greek symbols (")us 
thermal diffusivity ( ' )*  

/3 parameter in bound construction (7) 
7 non-dimensional minimum eigenvalue 0f2 

inner and outer boundaries of the kth 
covering rectangle 
degree of steady-state 

functions describing kth covering 
rectangle 
non-dimensional temperature 
perturbation 
non-dimensional temperature 
perturbation in local coordinates in 
kth covering rectangle 
non-dimensional steady-state 
temperature 
local coordinates in covering rectangles 
non-dimensional heat generation 
density 
time-to-steady-state in L2(~) norm 
time-to-steady-state in L ~ norm 
non-dimensional temperature 
non-dimensional eigenfunction 
non-dimensional minimizing 
eigenfunction 
domain of kth covering rectangle 
domain. 

initial 
lower bound 
upper bound 
embedding 
non-dimensional 
domain boundary. 

the two-dimensional case, x = (x, y), our results will 
apply to three space dimensions as well_ 

2.2. Non-dimensionalization 
Let a be a characteristic length of the body which where 

will be made more precise as the analysis proceeds_ 
The resulting non-dimensional domain and domain 
boundary will be denoted ~ and O~, respectively. For 
the time scale we then use a2/~, where ~ is the thermal 
diffusivity, ~ = k/pc. Lastly, as a temperature scale we 
choose the average initial temperature 

{;o /;o }2 :Ti - T~_ = (Ti(x) -- T~_) 2 dx dx (4) 

We then define the non-dimensional variables 
d) = ( T -  T ~ ) / ( 7 " . -  T.~), i =  t~/a 2, i = x /a.  E = 

(la2/k(7"i--T~), and Bi = ha~k, in terms of which 
equations (1)-(3) can be written in non-dimensional 
form. as 

OO 
a ~ =  V ' -~+E in ~ (5) where 

- V ~ ' n = B i ~  on O• (6) 

~ ( ~ , 7 = 0 ) = ~ ( ~ )  in fi (7) 

I O i2 (~)d£ / I  d ~ =  I (8) 

from the definition (4). 
Note that if T~(x) = T,, we need to introduce a 

modified non-dimensional temperature, + = O/E, 
with initial condition ~ = 0; with this simple change 
in scaling the remainder of our results remain 
unchanged. 

2.3. Definition of steady-state 
We next consider the temperature as the sum of the 

steady distribution and unsteady deviation 

O(i,  t") = O(i)  + 0(i, ~ (9) 
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' FIG. I. Example of a "dunking" problem. 

and 

V z O + E = 0  in ~ (10) 

- - V O ' f i = B i O  on 0~ (11) 

00 
a ~ =  ~20 in fi  (12) 

- V O ' ~ = B i O  on c3~ (13) 

0 ( ~ , ? = 0 ) = 0 , ( ~ )  in ~ (14) 

where 0i(i) = q)~(~)-®(:~). Note that if 'z = 0 then 
® = 0 .  

It is well known that the solution of problem (12)- 
(14) decays in time. Our interest is to evaluate the rate 
at which the solution goes to zero. In order to be more 
precise, we need to introduce the norm by which to 
measure the perturbation. For convenience we shall 
use the L2(~)-norm, defining the non-dimensional  
time-constant f(Bi) as 

f(Bi) = max ?such that 02(i,  ?) d i  
~,,_-- 

The dimensional time constant  z is related to the non-  
dimensional time constant  f(Bi) by r = fa'-/m We 
define fu~(Bi) to be a function such that 
f(Bi) ~< fua(Bi) for all Bi_ 

The choice of e in (15) determines the 'degree of 
steady-state' that is required. In the case where E is 
non-zero, some estimate o f® is required (for example, 
based on simple resistance concepts) if f (Bi)  is to be 
an absolute measure. Note that in the common case 
in which there is no heat source, E = 0, and the initial 
temperature is uniform, Ti = Ti, (15) simply requires 
that the L'--average of T - - T ~  be reduced to e of 
I~,-T~I- 

It will be of value to express f (Bi)  in somewhat less 
abstract form. In particular, we note that f (Bi)  is 
defined for a particular body as the maximum equi- 

libration time over all possible ~ ( ~ )  and E(~), and 
thus f(Bi) = - I n  ~,/y(Bi), where 7(Bi) = - ) ~ m m ,  and 
2mi n is the minimum eigenvalue of the (non-dimen- 
sional) negative-definite eigenproblem 

V 2 X = 2 Z  in ~ (16) 

- V z ' n = B i x  on 8ft. (17) 

As defined, f (Bi)  is already an upper bound over all 
initial conditions ( ~  and E) ;  we reserve the term 
?uB(Bi) for upper bounds of this upper bound, that 
is, f u n ( B / ) =  --In e/yLa(Bi), where 7La(Bi)< 7(Bi). 
From (16) and (17) we remark that 

?(Bi) = min R(z, Bi) 
xEHI(~) 

(18) 

which is simply the Rayleigh quotient associated with 
our eigenproblem. The minimizing eigenfunction 
associated with 7(Bi) will be denoted ~k(Bt), that is, 
7(Bi) = R(tp(Bi), Bi). Here ] ~ '  dg represents the sur- 
face (line in two space dimensions) integral over 8fl, 
and H h(fi) = {~lzTe L2(fi), V/~ L-'(fi)}. 

The Rayleigh quotient result can be arrived at by 
energy arguments as well: we multiply (12) by 0, per- 
form integration by parts on the right-hand side, and 
employ (I 3) on the resulting boundary terms to give 

Lo2 d~ d~ = -- Bi dg 

-f~ VO" VO di .  (19) 

It follows that 

dt- d i  ~< -27 (Bi )  d~ (20) 

from which we conclude that 

(f o: di) ''2 

~< ( f  (O~(i)_®(i))2 di)'2 e ~,o,,; (21) 

and that an upper bound for time-to-steady-state can 
thus be found from 

- - l n e  
zua = YLa(Bi)" (22) 

It now remains to find a sharp "~La(Bi). 
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3. P R E L I M I N A R Y  ANALYSIS  

We first consider the low-B/limit_ It is immediately 
apparent from classical heat transfer considerations 
[1-3] that for Bi = ha/k << 1 

( pca  
z ~ - - l n e ,  Cl~-~l /i, B i ~ O  (23) 

(or f ~ - I n  ~(C~/Bi)). This can readily be motivated 
by considering the semi-infinite body conduction solu- 
t ion;  in particular, for Bi << 1, the conduction pen- 
etration time a2/a is small compared to the surface 
temperature rise time, k2/h2ct, thereby permitting a 
lumped approximation, T(t), within fL Equivalently, 
for Bi << 1 the internal conduction resistance is much 
smaller than the convective resistance. It is simple to 
show that C.a = If~l/l~gf~l, where If~l is the volume of 
the body and I~f~l is the surface area. This result can 
also be obtained directly from our Rayleigh quotient 
(18) by noting that as Bi~O,  g , = c o n s t ,  is the 
minimizer. 

We next consider the high-B/limit.  In this case the 
surface temperature rise time is very small compared 
to the penetration time (or equivalently the resistance 
is primarily internal except for very short times), and 
the time-to-steady-state is then independent of the 
heat transfer coefficient 

z ~  - l n e ( C 2 a 2 / ~ ) ,  B i o t a  (24) 

(or f ~ - I n  e(C2)). The constant  C2 can be estimated 
by returning to our Rayleigh quotient, and noting 
that, for large Bi, (17) is replaced by Z = 0 on d~, and 
thus minimization in (18) is over zeH0t(~) ,  where 
H~(~)  = {ZIz~ H ~ (~), zl,~ = 0}. The first integral in 
(18) now vanishes, as 7.1,~ = 0, and we thus arrive at 

[o- - 

V%. V I di 
I 
C~=7(°°) =xEn'.ih)min R(Z,0)-" [,22d~ (25) 

A lower bound can then be obtained for y(oo) by 
embedding ~ in a larger domain ~*, ~ c ~*, for 
which the min imum eigenvalue y* can be determined 
more readily; for example, Q* can be chosen as the 
rectangle of Fig_ 2_ More precisely, we define y* as 

[~ . V7%*.~%* di 
y * =  min R * ( X * , 0 ) = "  ~ (26) 

z'eH'(fi') / Z .2 d i  
J~ 

and ~* as ~*ln = ~ (~) ,  ~.*1=~,(~) = 0_ Here 
ext(~) refers to the complement of ~ in ~*. 
Since ~*~H~(~*)  by virtue of ~(oo)1,~=0, 
y* -%< R * ( ~ * ,  0) = R(~(oo) ,  0) = ;(oo), giving C2 = 

1/7(oo) ~< l/y*. Numerical results for this approach 
will be given in Section 5. 

These standard results, though perhaps helpful, are 
nevertheless highly unsatisfactory. First, the bound- 

FIG, 2. Example of construction of an upper bound for r for 
large Bi by the use of variational embedding techniques. 

ing techniques are available only for low or high Bi, 
with no uniform estimate possible; the embedding 
technique of (26) will not extend to finite Bi due to 
the presence of the boundary integral and the nonzero 
value of Z on c~. Second, the variational technique 
(26) is, in practice, not sharp ; lor example, the embed- 
ding shown in Fig. 2 will yield a very poor estimate. 
Variational techniques, which work quite well for 
steady conduction estimates [4, 5], are less attractive 
in the unsteady framework. 

A plausible uniform estimate for z for all Biot num- 
bers is 

Zu, = - In E ~C i + C'_, (27) 

or, in non-dimensional  form 

fuB(Bi) = - I n  c(C'~/Bi+C%_) (28) 

as this additive formula correctly represents both 
limits, Bi---, 0, and Bi--. oo. Equation (27) can be 
motivated physically by noting that the time to steady 
state of a system exhibiting two time scales is dictated 
by the slower of the two phenomena. We now turn to 
the new contr ibution of this paper : a sharp, uniform 
bound for z which provides a rigorous construction 
for formula (27) with explicit values for C'~ and C2. 
Although our methods are mathematical,  a simple 
physical interpretation will result. 

4. U N I F O R M  B O U N D  FOR "~ 

4.1_ Domain decomposition 
We shall first break up our domain into parts, then 

find estimates on the individual building blocks, and 
subsequently sum to achieve the final yL,(Bi) and 
hence fua(Bi). All results are derived in two space 
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FIG. 3. Example of a generalized rectangle. 

dimensions and subsequently extended to three space 
dimensions. To begin, we define a generalized rec- 
tangle to be a standard rectangle save that one side 
may be curved, as shown in Fig. 3. More specifically, 
we introduce a local coordinate system (~', 9)( = (~/a, 
q/a)) that defines such a rectangle as 0 < ~'< T, 
0 < 0 < OT(~'), where 0T(~') is a positive, continuous 
function of ~" over the interval ]0, [[. We shall also 
require that the mapping from (2, y-)(= (x/a, y/a)) to 
(~', 9) be shape-preserving, that is, involve only a 
translation and rotation of(Y,.V). We denote the 0 = 0 
edge of a generalized rectangle as Fo, and the 0 = 0T 
edge as r v  

We next construct a 'covering' of ~ comprising a 
set of such rectangles ~ ,  k = 1 . . . .  , K, defined by 
0 < ( <  ~', 0 < O < 0~(~') such that 

~ * ~ t = O ,  f o r k : / : /  (29) 

~"~k(.~=j~k~:~), V k = l  . . . . .  K (30) 

fi c ~ fi~ (31) 
k = l  

F ~ c ~ = ~ ,  V k = l  . . . . .  K (32) 

F ~ c f i ,  V k = l  . . . .  ,K  (33) 

fi* n Off = 0k(~'), 0 < 8 < ~ '  (34) 

where 0~ (~') is a positive continuous function over the 
entire interval ]0, ~[_ An example of an admissible 
covering is shown in Fig. 4. 

4.2. A bound on ~* 
We now consider a particular ~k, and derive the 

result required to form a global bound in the next 
section. To begin, we write for 0k(~ ", 0) = 0(2, )7)1 ~, 

B 

A A 

"r~ OOk d ' o'. (35) 

If we consider 0'(~, 0 ) =  A+B, then (0*)z(~',0)= 
A2+2AB+B2; we can then eliminate the AB term 
in favor of the desired A 2, B 2 terms by using the 
inequality 2AB <~ flA2+(1/fl)B z (fl > 0). This then 
gives for (35) 

(Ok)2(~ ", 9) = (1 +~)(0~);(~, Ok(~')) 

l +0 + ~ T d O ) -  (36) 

The next step is to generate the volume and surface 
integrals required by (18), giving 

#~ (0k) 2 (~', 0) dOd~" 

--- (l +fl) f~, (Ok)2(~, O~(b ) dOd~" 

+ ( 1  ~)  f#  ( r: 00' 2 + \Jo.(~ Of' dO') dOd~- (37) 

where 

f "d0d~ '=  I ~' I ~t~)'d0d~. (38) 
3O J~.(~) 

We first remark that 

f~(O*)2(~,O)dOd~=f~O2(2,y-)d2d9 (39) 

by virtue of the unity-Jacobian transformation 
(~', q) ~ (2, 9). Next, we note that 

(0')2(~ ", O~ (¢~) dO d~" ~< a 7k 02 dg 

(40) 

where aTk=maxtEm.r*l(O-~r(~')--0~(~)), and d g =  
x/(d:~2+d92) (>d~')_ Lastly, using the Cauchy- 
Schwarz inequality we reduce the final term in (37) as 

, U , ( t  oo _ 

<3o J~.(5 \ ~ j  dO']dOd~ (4]) 

"< L\aO'/+ jdO' 

r } x (O--O~(,,x~)) dO d~" (42) 
J¢.(5 

(~)~ 
r V0.V0 d~. (43) 

~< 2 j~, 

We summarize the result of  this section as 

fff, O2 di <<" (l + fl) Tak fa O2 

+ l+f l . ]  2 ,J~,VO'VOdi" (44) 

We now turn to the assembly process. 
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FIG. 4. Admissible covering of the domain f~ of Fig. I by K = 6 rectangles, f~ . . . . .  f~6. The shading in 
each case indicates lines ofconstant ~. At bottom right is an exploded view of the covering associated with 

the right "wing' of the domain ~;  dashed lines indicate r/-r edges. 

4.3. EstimateJbr f(Bi) 
To begin, we simply sum (44) over all subdomains, 

giving 

~, f t y O 2 d i ~ < ( l + f l )  ~ aTkf 02dg 
k =  I k = I ~ r ~ A  

1 ~ (d*)-' 

Defining 

= m a x  (7  k 
k 

we then arrive at 

ao 2 di ~< aT(l +fl) I 02dg 

+ ~ -  I +  VO- VO di .  

aO-~ d i  ~< (I +fl) I O'-dg 

'(  )Io + ~  1+ VO.VO d i  (49) 

o r  

(45) 2 (l+l/fl)2(l+fl) ~r~ 02dg+I.Ji~VO'VOd~ 

1 + l/fl <~ r (50) 

Jo 02 d i  

(46) 
which is now quite close to our Rayleigh quotient 
(18)_ 

To complete the analysis we now let 

2(1 +fl) 
- -  - B i  (51) 
( l +  1/fl) 

which gives (taking the positive solution) 
(47) 

Bi 
= T (52) 

We now remark that, to this point, our length scale a 
is indeterminate" to simplify what follows we now 
define a ~ = 1, that is 

a = max max ( ¢ ( ~ ) - q ~ ( ~ ) )  (48) 
k ~ ] 0 , P [  

(note all variables in (48) are dimensional), giving for 
(47) 

yielding 

Bi t  O~-dg+ I VO'VOdi  
Bi a~a d~ - -  <~ 

1 +Bi/2 ~ 0  2 
J. di 

for which we conclude that 

(53) 
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Bi 
7t.n(Bi) -- 

1 + Bi/2 

and 

(' fu~(Bi) = - I n  z ~ + 

which is a uniform-in-B/, and, as we shall see, quite 
sharp, bound for f(Bi).  The estimate (55) has the form 
suggested in (28). 

For  purposes of  application we unravel f(Bi) to 
arrive at the following dimensional form : 

, ['pca a'-) 
tun = - m ~  h + 2ct " 

It is thus clear that the best bound available from the 
theory corresponds to that rectangular covering that 
minimizes a. We now turn to an example which illus- 
trates the physical basis for this optimality, as well as 
the sharpness of  the resulting estimate. 

Remark 1. In the case of  ~ in three space dimensions 
the same estimate applies; the only modification to 
the construction is that one must now consider paral- 
lelepipeds with one curved face as opposed to rec- 
tangles with one curved side. 

Remark 2. In certain cases star-shaped (polar) rather 
than rectangular (Cartesian) analysis yields a tighter 
bound;  such polar elements can be used in con- 
junction with rectangles to cover a domain. As the 
analysis is very similar, and the improvement  nominal,  
we do not discuss this further. 

Remark 3. It is possible, though much more difficult, 
to obtain bounds for f~ (Bi), defined as 

f~ (Bi) = m a x / s u c h  that max 10(~,/.)1 
¢,,_= iE~ 

= e m a x  I ( ¢ ~ - - 0 ) ( ~ ) 1 -  

In general, f~ > f, however, as r, ---, 0 the two estimates 
coalesce, indicating that the L'- estimate may also be 
used with some confidence in estimating the time at 
which the maximum deviation from steady-state is 
very small. 

Remark 4. It is very simple to extend our result to 
other parabolic equations with symmetric negative- 
definite spatial operators, such as, for example, the 
Stokes problem of  incompressible fluid mechanics. 

5. APPLICATION 
(54) 

We consider f~ to be the simple domain shown in 
Fig. 1. Our decomposition is shown in Fig. 4, which 
we believe to be an optimal (i.e. a-minimizing) con- 
struction (a = 0.1L/~/2). Note that this a-minimizing 

(55) solution is not unique:  for example, we can readily 
achieve the same a with only four rectangles by com- 
bining rectangles f~  and f ~  and rectangles f~'- and 
f~5 respectively. 

Taking first the Iow-Bi limit, we find from (56) 
rub = - I n  ~(O_0707(pcL/h)) compared with the 
exact low-B/ result (see Section 3) of  
z = - I n  e(O.0475(pcL/h)). Looking now at the high- 
Bi case, we find from (56) Zu~ = - I n  ~(0_0025(L'-/~')) 

(56) as compared to the exact solution (found by solving 
(25) numerically) of  t = - I n  e,(0.00108(L-'/cx)). Had 
we chosen for large Bi to embed Q c Q* as in Fig. 2 
and use the variational bound of  (26) we would 
obtain r ~< - I n  e(0_0405(L-'/~z)), which poorly over- 
estimates the result. (Note that rectangular decompo- 
sition can result in highly accurate variational esti- 
mates as well, in which Dirichlet conditions are 
imposed at internal boundaries to estimate eigen- 
values of  the constituent rectangles; unfortunately, 
the result is not an upper bound for r.) 

The real value of  (56) is not only the relatively sharp 
estimation, but also the uniformity in Biot number : 

t u B =  - l n E  0.0707 ~ +0.0025 _ (58) 

The physical basis for the uniformity is the fact that, 
for proper coverings, a accurately reflects the impor- 
tant physical length scales : for low Bi, a can be inter- 
preted as approximately IO l / IO~l  ; for high Bi, a can 
be motivated as the maximum length of  the thermal 
path by which energy is conducted to the boundary. 
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